PhD courses spring 2018

<table>
<thead>
<tr>
<th>No.</th>
<th>Course title</th>
<th>Course responsible</th>
<th>Date</th>
<th>ECTS</th>
<th>Learning outcomes</th>
</tr>
</thead>
<tbody>
<tr>
<td>0110/14</td>
<td>Advanced Course in Laboratory Animal Science - Experimental Surgical Procedures in Rodents</td>
<td>Frederik Dagnæs-Hansen</td>
<td>14 - 16 May 2018; 21 - 23 May 2018</td>
<td>6.2</td>
<td>Networking with national and international peers of your research area. Practice oral presentation skills and in depth discussion of scientific questions. Update your knowledge on new biological concepts in depth discussion of technological/method approaches to study your scope of questions.</td>
</tr>
<tr>
<td>0178/08</td>
<td>50th Sandbjerg Summer Meeting</td>
<td>Jørgen Jeppesen</td>
<td>24, 25 and 26 April 2018</td>
<td>2.1</td>
<td>Receive a better understanding of how functions of the immune system is studied at the molecular level. Understand the connection between molecular mechanisms and immunodeficiencies. Understand the connection between molecular mechanisms and chronic inflammation disorders and how to treat them. Receive a better understanding of the connection between cancer and functions of the immune system, including cancer therapy. Be able to better contemplate quantitative aspects of molecular mechanisms and functions of the immune system.</td>
</tr>
<tr>
<td>0225/05</td>
<td>Molecular Immunology</td>
<td>Thomas Vorsø-Jensen</td>
<td>24 - 26 March and 27 - 29 April 2018</td>
<td>2.1</td>
<td>Acquire a systematic knowledge on what is genome engineering and what is the principle of CRISPR/Cas9-mediated genome engineering. Know and learn what kinds of biological questions and applications have been and could be addressed by genome engineering. Learn how to apply genome engineering to address scientific questions related to their PhD projects. Capable of independently designing a CRISPR/Cas9-mediated gene disruption project and CRISPR vectors independently define the optimal and best method for the choice of cell types, the choice of vectors, CRISPR/Cas9 vector delivery, nuclease activity assaying, off-target analysis, and interpretation and presentation of genome engineering results. Can independently carry out genome editing experiments using CRISPR-Cas9 technology in their own project.</td>
</tr>
<tr>
<td>0264/03</td>
<td>Graduate Neuroscience Course</td>
<td>Mai Marie Holm</td>
<td>22 - 24 March and 29 March and 30 March 2018</td>
<td>3.5</td>
<td>Participants will get a thorough theoretical knowledge within all areas of neuroscience. The course is structured according to the esteemed advanced level textbook entitled “Neuroscience” by Kandel et al. published by Sinauer Associates, Inc. and all sections will be dealt with. The book will form the fundamental basis of the course, however not all specific details will be discussed. Participants are expected to obtain the book and prepare the relevant chapters before the sessions. Emphasis will be put on most interesting areas, as evaluated by the lecturers and their research profile. Topics include: Biophysical Signals, Neuronal Transmission and Plasticity, Animal Models in Neuroscience, The Sensory System, Pain, Motor Control, Brain Development, Novel Treatment Principles in Neurological and Psychiatric Diseases, Neural Circuits, Memory and Learning, Sleep, Speech and Language, Emotions, Neuroimaging and Memory. Additionally, lecturers will present selected data from their own research to provide the most up-to-date techniques and knowledge. Selected reviews and original papers will be used, where relevant, to complement the book.</td>
</tr>
</tbody>
</table>

Learning outcomes for the course

- **Understanding of protein composition and structure including impact of post-translational modifications, knowledge of protein expression in academia and industry, theoretical background for understanding protein purification/knowledge of mass spectrometry for protein identification and characterization.**
- **Practical experience with protein purification and characterization.**

The participants should obtain basic knowledge about the Laboratory animal science, which will make it possible for them to participate in research contributing to the humane use of laboratory animals ensuring high standards of animal welfare and quality in the performing, evaluating and reporting of laboratory animal experiments. Advanced insight into Danish and international legislation concerning animals used for scientific purposes, the ethical aspects working with laboratory animals as well as the principles of the 3 Rs. Basic insight into the biology of laboratory animals, including normal/abnormal behaviour, housing, breeding, welfare and feeding. Advanced insight into the use and limitation of animal models in biomedical research. Insight into strategies for planning and analyses of experimental animal studies, including the importance of standardisation of environmental, microbiological factors and use of humane endpoints. Knowledge about advanced experimental procedures such as microsurgery, imaging, telemetry as well as practical experience with handling, anaesthesia, analgesia, euthanasia and surgical procedures in the most common used laboratory animals.

- **Advanced insight into Danish and international legislation concerning animals used for scientific purposes, the ethical aspects working with laboratory animals as well as the principles of the 3 Rs. Basic insight into the biology of rodent laboratory animals, including normal/abnormal behaviour, housing, breeding, welfare and feeding. Advanced insight into the use and limitation of animal models in biomedical research. Insight into strategies for planning and analyses of experimental animal studies, including the importance of standardisation of environmental, microbiological factors and use of humane endpoints. Knowledge about advanced experimental procedures such as microsurgery, imaging, telemetry as well as practical experience with handling, anaesthesia, analgesia, euthanasia and surgical procedures in rodent laboratory animals.**

- **Networking with national and international peers of your research area. Practice oral presentation skills and in-depth discussion of scientific questions. Update your knowledge on new biological concepts. In-depth discussion of technological/method approaches to study your scope of questions.**

- **Receive a better understanding of how functions of the immune system is studied at the molecular level. Understand the connection between molecular mechanisms and immunodeficiencies. Understand the connection between molecular mechanisms and chronic inflammation disorders and how to treat them. Receive a better understanding of the connection between cancer and functions of the immune system, including cancer therapy. Be able to better contemplate quantitative aspects of molecular mechanisms and functions of the immune system.**

- **Acquire a systematic knowledge on what is genome engineering and what is the principle of CRISPR/Cas9-mediated genome engineering. Know and learn what kinds of biological questions and applications have been and could be addressed by genome engineering. Learn how to apply genome engineering to address scientific questions related to their PhD projects. Capable of independently designing a CRISPR/Cas9-mediated gene disruption project and CRISPR vectors independently define the optimal and best method for the choice of cell types, the choice of vectors, CRISPR/Cas9 vector delivery, nuclease activity assaying, off-target analysis, and interpretation and presentation of genome engineering results. Can independently carry out genome editing experiments using CRISPR-Cas9 technology in their own project.**

- **Participants will get a thorough theoretical knowledge within all areas of neuroscience. The course is structured according to the esteemed advanced level textbook entitled “Neuroscience” by Kandel et al. published by Sinauer Associates, Inc. and all sections will be dealt with. The book will form the fundamental basis of the course, however not all specific details will be discussed. Participants are expected to obtain the book and prepare the relevant chapters before the sessions. Emphasis will be put on most interesting areas, as evaluated by the lecturers and their research profile. Topics include: Biophysical Signals, Neuronal Transmission and Plasticity, Animal Models in Neuroscience, The Sensory System, Pain, Motor Control, Brain Development, Novel Treatment Principles in Neurological and Psychiatric Diseases, Neural Circuits, Memory and Learning, Sleep, Speech and Language, Emotions, Neuroimaging and Memory. Additionally, lecturers will present selected data from their own research to provide the most up-to-date techniques and knowledge. Selected reviews and original papers will be used, where relevant, to complement the book.**

- **Understanding of protein composition and structure including impact of post-translational modifications, knowledge of protein expression in academia and industry, theoretical background for understanding protein purification/knowledge of mass spectrometry for protein identification and characterization.**
- **Practical experience with protein purification and characterization.**

The participants should obtain basic knowledge about the Laboratory animal science, which will make it possible for them to participate in research contributing to the humane use of laboratory animals ensuring high standards of animal welfare and quality in the performing, evaluating and reporting of laboratory animal experiments. Advanced insight into Danish and international legislation concerning animals used for scientific purposes, the ethical aspects working with laboratory animals as well as the principles of the 3 Rs. Basic insight into the biology of laboratory animals, including normal/abnormal behaviour, housing, breeding, welfare and feeding. Advanced insight into the use and limitation of animal models in biomedical research. Insight into strategies for planning and analyses of experimental animal studies, including the importance of standardisation of environmental, microbiological factors and use of humane endpoints. Knowledge about advanced experimental procedures such as microsurgery, imaging, telemetry as well as practical experience with handling, anaesthesia, analgesia, euthanasia and surgical procedures in rodent laboratory animals.

- **Networking with national and international peers of your research area. Practice oral presentation skills and in-depth discussion of scientific questions. Update your knowledge on new biological concepts. In-depth discussion of technological/method approaches to study your scope of questions.**

- **Receive a better understanding of how functions of the immune system is studied at the molecular level. Understand the connection between molecular mechanisms and immunodeficiencies. Understand the connection between molecular mechanisms and chronic inflammation disorders and how to treat them. Receive a better understanding of the connection between cancer and functions of the immune system, including cancer therapy. Be able to better contemplate quantitative aspects of molecular mechanisms and functions of the immune system.**

- **Acquire a systematic knowledge on what is genome engineering and what is the principle of CRISPR/Cas9-mediated genome engineering. Know and learn what kinds of biological questions and applications have been and could be addressed by genome engineering. Learn how to apply genome engineering to address scientific questions related to their PhD projects. Capable of independently designing a CRISPR/Cas9-mediated gene disruption project and CRISPR vectors independently define the optimal and best method for the choice of cell types, the choice of vectors, CRISPR/Cas9 vector delivery, nuclease activity assaying, off-target analysis, and interpretation and presentation of genome engineering results. Can independently carry out genome editing experiments using CRISPR-Cas9 technology in their own project.**

- **Participants will get a thorough theoretical knowledge within all areas of neuroscience. The course is structured according to the esteemed advanced level textbook entitled “Neuroscience” by Kandel et al. published by Sinauer Associates, Inc. and all sections will be dealt with. The book will form the fundamental basis of the course, however not all specific details will be discussed. Participants are expected to obtain the book and prepare the relevant chapters before the sessions. Emphasis will be put on most interesting areas, as evaluated by the lecturers and their research profile. Topics include: Biophysical Signals, Neuronal Transmission and Plasticity, Animal Models in Neuroscience, The Sensory System, Pain, Motor Control, Brain Development, Novel Treatment Principles in Neurological and Psychiatric Diseases, Neural Circuits, Memory and Learning, Sleep, Speech and Language, Emotions, Neuroimaging and Memory. Additionally, lecturers will present selected data from their own research to provide the most up-to-date techniques and knowledge. Selected reviews and original papers will be used, where relevant, to complement the book.**

- **Understanding of protein composition and structure including impact of post-translational modifications, knowledge of protein expression in academia and industry, theoretical background for understanding protein purification/knowledge of mass spectrometry for protein identification and characterization.**
- **Practical experience with protein purification and characterization.**

The participants should obtain basic knowledge about the Laboratory animal science, which will make it possible for them to participate in research contributing to the humane use of laboratory animals ensuring high standards of animal welfare and quality in the performing, evaluating and reporting of laboratory animal experiments. Advanced insight into Danish and international legislation concerning animals used for scientific purposes, the ethical aspects working with laboratory animals as well as the principles of the 3 Rs. Basic insight into the biology of laboratory animals, including normal/abnormal behaviour, housing, breeding, welfare and feeding. Advanced insight into the use and limitation of animal models in biomedical research. Insight into strategies for planning and analyses of experimental animal studies, including the importance of standardisation of environmental, microbiological factors and use of humane endpoints. Knowledge about advanced experimental procedures such as microsurgery, imaging, telemetry as well as practical experience with handling, anaesthesia, analgesia, euthanasia and surgical procedures in rodent laboratory animals.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
<th>Dates</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>B250/16</td>
<td>Responsible Conduct of Research</td>
<td>Helle Prætorius</td>
<td>5 June og 19 June 2018</td>
<td>Aarhus University</td>
<td>Be familiar with the Danish Code of Conduct for Research Integrity as well as Aarhus University guidelines and Health standards of Responsible Conduct of Research Be able to understand and discuss principles of research integrity and responsible conduct of research Be able to identify, analyze and discuss cases of scientific misconduct and questionable research practices in the grey zone between misconduct and poor science. Know where to seek advice concerning responsible conduct of research.</td>
</tr>
<tr>
<td>B273/01</td>
<td>Advanced In-vivo Optical Imaging Techniques</td>
<td>Sebastian Frische</td>
<td>20, 30, 1 January and 2 and 26 February 2018</td>
<td>Aarhus University</td>
<td>To introduce advanced optical techniques for in-vivo imaging and how these can be applied in research projects. The students should be able to understand the basis of different techniques, to learn their pitfalls, disadvantages and advantages, and to plan research that include these techniques.</td>
</tr>
<tr>
<td>CLINFO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C12/44</td>
<td>Quantitative Medical Graphics</td>
<td>Jens Nyegaard</td>
<td>18 April and 25 April 2018</td>
<td>Aarhus University</td>
<td>Give participants means to evaluate quantitative graphs and provide them with knowledge about which graphs to choose for their own data and a software toolbox to create publish-ready graphs for international journals.</td>
</tr>
<tr>
<td>C14/70</td>
<td>Magnetic Resonance</td>
<td>Hans Stødkilde-Jørgensen</td>
<td>14 - 18 May 2018</td>
<td>Aarhus University</td>
<td>The PhD course in Molecular Medicine is a practical lab course, where we will introduce you to basic DNA and RNA technologies. During the course you will learn how to: Isolate DNA and RNA from blood and cell cultures Optimize a PCR reaction Perform gel electrophoresis Detect gene variations by sequence analysis, allele-specific probe chemistry and melting curve analysis Synthesis cDNA from RNA and perform quantitative PCR analyses Design primers and evaluate gene sequence and expression data using public available genome browsers.</td>
</tr>
<tr>
<td>C166/28</td>
<td>Molecular Medicine</td>
<td>Billie K. J. Ohm</td>
<td>23 - 26 April 2018</td>
<td>Aarhus University</td>
<td>Give participants means to evaluate quantitative graphs and provide them with knowledge about which graphs to choose for their own data and a software toolbox to create publish-ready graphs for international journals.</td>
</tr>
<tr>
<td>C116A/13</td>
<td>Advanced Course in Laboratory Animal Science - Experimental Surgical Techniques in Swine</td>
<td>Birgitte S. Kouboldt</td>
<td>26 March - 2 March 2018</td>
<td>Aarhus University</td>
<td>Give participants means to evaluate quantitative graphs and provide them with knowledge about which graphs to choose for their own data and a software toolbox to create publish-ready graphs for international journals.</td>
</tr>
<tr>
<td>C119/67</td>
<td>Datamanagement & Stata (previous title: “STATA and Data Documentation”)</td>
<td>Jakob Hjort</td>
<td>20 - 30 January 2018</td>
<td>Aarhus University</td>
<td>Having completed this course the student will be able to: Relate to the basic principles of data documentation Relate to Stata’s user interface and basic functionalities Use Stata’s build-in help system Build well-structured command files (“do-files”)</td>
</tr>
<tr>
<td>C119/68</td>
<td>Datamanagement & Stata</td>
<td>Jakob Hjort</td>
<td>2 - 2 February 2018</td>
<td>Aarhus University</td>
<td>Use Stata’s build-in help system Build well-structured command files (“do-files”)</td>
</tr>
<tr>
<td>C119/69</td>
<td>Datamanagement & Stata</td>
<td>Jakob Hjort</td>
<td>5 - 6 February 2018</td>
<td>Aarhus University</td>
<td>Use Stata’s build-in help system Build well-structured command files (“do-files”)</td>
</tr>
<tr>
<td>C119/70</td>
<td>Datamanagement & Stata</td>
<td>Jakob Hjort</td>
<td>8 - 9 February 2018</td>
<td>Aarhus University</td>
<td>Use Stata’s build-in help system Build well-structured command files (“do-files”)</td>
</tr>
</tbody>
</table>
Understanding of the principles of proteomics methodologies, and how the different methods can be combined.

Knowledge of the value of protein analysis in biomedical research, including advantages and limitations.

Acquired practical experience in 1) lab work in protein analysis and 2) software tools used to analyze proteomics data with regard to MS spectra, protein modifications, pathway analysis etc.

To be able to interpret, discuss and critically assess proteomics data.

To be able to design studies on protein analysis and proteomics (type of sample, procedures, instruments etc.).

The participant should be able to reflect on/discuss
1) Selection of study design
2) Power sample calculations
3) Collaboration with the ethics committee
4) Consent, enrollment, eligibility procedures
5) Monitoring of treatment effects and quality control
6) Data management
7) Collaboration with the pharmaceutical industry – pros and cons

The student should be able to define epidemiologic measures of occurrence and explain the difference between prevalence and incidence.

The student should be able to define the following epidemiologic measures of association; relative risk, risk ratio, odds ratio, and rate ratio, risk difference and excess risk, including attributable risk and population attributable risk.

The student should be able to define and describe strengths, weaknesses, and main applications of the designs; ecological, cross-sectional, follow up, case-control and intervention studies.

The student should be able to define selection bias, information bias and confounding and be aware that evaluating the direction and strength of a possible bias or confounding is essential.

The student should learn to think along the lines that, when faced with data from an analysis epidemiologic study showing an association (or no association), this might reflect; random error, bias (systematic error), including selection bias or information bias, or confounding, or, if all other possibilities seem unlikely, causality.

Providing a broad knowledge and understanding of clinical epidemiology. Designing a clinical epidemiology study. Understanding measures of disease frequency, effect and association, and which are appropriate to each study design. Assessing study validity, including identifying various biases and sources of error in epidemiological studies. Interpreting clinical epidemiology research papers.

After completion of this course, participants are expected to:

1. Be familiar with the Danish registries most often utilized in clinical research
2. Understand the data structure as well as some specific pitfalls of working with these registries
3. Have a deeper epidemiologic understanding of the strengths and weaknesses of secondary data sources
4. Possess the practical skills necessary to execute validation studies
5. Be able to apply the acquired knowledge and practical skills in research projects

After completion of this course participants are expected to:

1. Have acquired a deeper understanding of health technology assessment principles
2. Have acquired a deeper understanding of data sources for clinical research of surgical procedures, devices and intensive care
3. Have acquired the strengths and weaknesses of different study designs and the principles of analytic methods in studies of surgical procedures, devices and intensive care
4. Be able to apply the acquired knowledge and practical skills in scientific discussions and research projects.
<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
<th>Dates</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>C220/05</td>
<td>Preparation and Critical Reading of Meta-Analysis</td>
<td>Inger Mechenburg</td>
<td>27 - 28 February 2018</td>
<td>1.4</td>
</tr>
<tr>
<td>C220/07</td>
<td>Fat Your Discoveries into Use in Society</td>
<td>Tan Zeffmann Glud</td>
<td>24 January, 31 January, 26 February to 9 April 2018</td>
<td>5.6</td>
</tr>
<tr>
<td>C220/09</td>
<td>Introduction to Research Training in Health Sciences</td>
<td>Birte E. J. Olsen</td>
<td>5 - 6 March 2018</td>
<td>1.4</td>
</tr>
<tr>
<td>C220/12</td>
<td>Cancer Epidemiology using the Danish Clinical Cancer Databases</td>
<td>Deidre Cronin Perron</td>
<td>10 - 23 March 2018</td>
<td>3.5</td>
</tr>
<tr>
<td>C220/13</td>
<td>Responsible Conduct of Research</td>
<td>Henning Grønbæk</td>
<td>5 February to 10 February 2018</td>
<td>3.1</td>
</tr>
<tr>
<td>C220/14</td>
<td>Responsible Conduct of Research</td>
<td>Anne Mette Hvas</td>
<td>26 February to 12 March 2018</td>
<td>3.1</td>
</tr>
<tr>
<td>C220/20</td>
<td>Get Ready to Work with Biostatistics (previous title: "Basic Clinical Statistics")</td>
<td>Anne Mette Hvas</td>
<td>12 April to 26 April 2018</td>
<td>1.8</td>
</tr>
<tr>
<td>C220/22</td>
<td>The Talented Researcher</td>
<td>Kamelia Smidt Rasmussen, Kristina Luz Møller</td>
<td>27 - 28 February and 24 - 25 April 2018</td>
<td>3.5</td>
</tr>
</tbody>
</table>

PH

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Instructor(s)</th>
<th>Dates</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>P169/08</td>
<td>Statistical Analysis of Time to Event Data</td>
<td>Erik Thorlund Farner</td>
<td>4 April, 8 May, 15 May, 22 May and 12 June 2018</td>
<td>3.0</td>
</tr>
<tr>
<td>P171/08</td>
<td>Qualitative Health Research I: Generating Data Material</td>
<td>Sanna Angel</td>
<td>10 - 12 January 2018</td>
<td>3.0</td>
</tr>
</tbody>
</table>

To carry out a meta-analysis based on the quantitative results of a systematic review, interpret the results and provide a clinical guideline based on the meta-analysis. Describe the statistical assumptions, the chosen methods and the results of the meta-analysis assess the quality of meta-analyses.

Methodology to identify and validate the applied value of own research (including stakeholder analysis). Methodology to reach out to other professions and build interdisciplinary network. Ability to review and adopt a research project to be more applied and direct on need and societal value. Interview techniques. Knowledge about business model components. Improvement of communication skills to better emphasize the need and value of own research for stakeholders.

Introduction to basic, clinical, qualitative and epidemiological research. Gain knowledge on writing research protocols. Gain knowledge on writing successful applications. Introduction to structured literature search. Reflections on student-supervisor relationships. Introduction to ethics and regulations in animal and clinical research.

To provide students with an overview on how to take a research idea through to implementing, analyzing, and interpreting an epidemiology study using the Danish Clinical Cancer Databases, and Denmark’s network of medical and population-based registries. Each concept will be introduced in a lecture. Through a combination of exercises and computer labs, students will be provided with guidance on implementing, analyzing and interpreting studies using data from the clinical cancer databases. Students are not required to complete an exam at the end of the course.

To be familiar with the Danish Code of Conduct for Research Integrity as well as Aarhus University guidelines and Health standards of Responsible Conduct of Research. Be able to understand and discuss principles of research integrity and responsible conduct of research. Be able to identify, analyze and discuss cases of scientific misconduct and questionable research practices in the grey zone between misconduct and poor science. Know where to seek advice concerning responsible conduct of research.

To be familiar with the Danish Code of Conduct for Research Integrity as well as Aarhus University guidelines and Health standards of Responsible Conduct of Research. Be able to understand and discuss principles of research integrity and responsible conduct of research. Be able to identify, analyze and discuss cases of scientific misconduct and questionable research practices in the grey zone between misconduct and poor science. Know where to seek advice concerning responsible conduct of research.

At the end of the course you should have learned about and strengthened your awareness of own strengths and challenges to enhance leadership in both work and life. You should have strengthened your project management skills in order to better control and plan your project and PhD-education with respect to deliverables, milestones and schedules. As a specific outcome all participants will have a plan with deliverables, milestones, and schedules for their PhD project.
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Instructor</th>
<th>Dates</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1/88/10</td>
<td>Qualitative Humanistic Health Research 2: Analyzing Data Material</td>
<td>Peter Moseus</td>
<td>5, 6, 12 and 13, 19 and 20 February, 12 and 13 March 2018</td>
<td>5.4</td>
</tr>
<tr>
<td>F1/88/08</td>
<td>Health Economics, Prioritisation and Evaluation</td>
<td>Erik Parner</td>
<td>7, 8 and 9 May 17 and 18 May 2018</td>
<td>1.2</td>
</tr>
<tr>
<td>P2/29/03</td>
<td>Quantitative Exposure Assessment in Occupational and Environmental Epidemiology</td>
<td>Ulrika Enemark</td>
<td>28 May - 1 June 2016</td>
<td>1.9</td>
</tr>
<tr>
<td>P2/27/04</td>
<td>Which Covariates to Adjust for: An Introduction to Directed Acyclic Graphs</td>
<td>Cathrine Carlsen Bach</td>
<td>22 - 29 + 30 January 2018</td>
<td>1.9</td>
</tr>
<tr>
<td>P2/27/01</td>
<td>Interplay Between Working Life and Health: Causes, Consequences and Causality</td>
<td>Ulrika Enemark</td>
<td>12 - 13 April 2018</td>
<td></td>
</tr>
<tr>
<td>P2/72/01</td>
<td>GIS in Health Sciences</td>
<td>Torben Siggaard/Olga Schuhlehn</td>
<td>12, 13 and 14 March 2018</td>
<td>2.3</td>
</tr>
<tr>
<td>P2/50/15</td>
<td>Responsible Conduct of Research</td>
<td>Ask Vest Christiansen</td>
<td>1 April and 17 April 2018</td>
<td>1.1</td>
</tr>
<tr>
<td>P2/90/29</td>
<td>Basic Biostatistics - part 1</td>
<td>Erik Parner</td>
<td>21 February, 28 February, 7 March and 14 March 2018</td>
<td>2.6</td>
</tr>
<tr>
<td>P2/90/29</td>
<td>Basic Biostatistics - part 2</td>
<td>Erik Parner</td>
<td>21 March, 4 April, 11 April and 18 April 2018</td>
<td>6.4</td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A88/71</td>
<td>Systematic Literature Search (Research-year)</td>
<td>AU Library</td>
<td>15 May 2018</td>
<td>0.7</td>
</tr>
</tbody>
</table>
Basic Course in Written English
Morten Pilegaard
8, 15, 22 and 29 January 2018
1.6
1. Knowledge about guidelines and conventions governing the structuring of clinical research papers.
2. Knowledge of principles of cohesion and thematic structure in research papers.
3. Knowledge of some of the main differences between English and Danish syntax and grammar.
4. Ability to describe typical structural and linguistic features of poster, abstract and paper.
5. Ability to trace errors of syntax and grammar in English-language texts.

Advanced Course in Written English
Morten Pilegaard
6, 12, 18 and 25 April 2018
1.6
1. Ability to use existing guidelines and conventions governing the structuring of clinical research papers.
2. Ability to analyse and describe typical structural and linguistic features of poster, abstract and paper.
3. Ability to apply principles of cohesion and thematic structuring in own texts.
4. Ability to analyse and produce select text types.
5. Ability to trace and correct errors of composition and grammar in English-language texts.

Research Presenter - Educational Informatics
Mads Ronald Dahl
2 and 16 March 2018
1.8
Methodologies in Computer-based teaching Skills for preparing and delivering research presentation
Reflective skills in preparing and performing teaching at university level
Produce and present good posters
Give and take feedback
Your Etos

Research Presenter - Educational Informatics
Mads Ronald Dahl
18 May and 1 June 2018
1.8
Methodologies in Computer-based teaching Skills for preparing and delivering research presentation
Reflective skills in preparing and performing teaching at university level
Produce and present good posters
Give and take feedback
Your Etos

PhD Supervision [supervisors]
Mette Krogh Christensen (CESU)
10, 17 April and 2 May 2018
0
The quality of PhD students’ education is largely dependent on the PhD supervisor’s competencies as a supervisor. The aim of the basic course in PhD supervision is to expand the participants’ repertoire of supervision strategies and methods in order to provide a flexible approach to supervision, strengthen their reflections on practices, roles and relationships in the supervision process, and share experiences and new knowledge for advancing PhD supervisors’ competencies.

Literature Search in Medical Databases (PhD)
AU Library
15 March 2018
0.7
To enable the participants to perform qualified searches, systematic as well as citation searches, in relevant medical databases.
To introduce the participants to methods of scientific quality measurements, thus enabling them to understand the basic principles of research evaluation.
To present a brief overview of different aspects related to research publication such as ORCID, Open Access, Copyright etc.

Literature search in medical databases (PhD)
AU Library
21 May 2018
0.7
See above

Power Point
Ditte Lykke Wehner, AU IT
13 March 2018
0
The aim of the course is to provide participants with 1) basic understanding of Power Point including basic functions and masterslides, 2) inspire participants to make greater and more creative PowerPoints, 3) provide tips and guidance to perform excellent presentations

Excel
Anine Elgaard
AU IT
26 April 2018
0
This course will be based on basic knowledge on Excel and will emphasize a deeper understanding of the possibilities regarding the use of tables and Pivot tables while introducing macro and basic VBA-programming

Welcome to the PhD study
Forskeruddannelsen
6 February 2018
0
The Graduate School of Health wishes to welcome all newly enrolled PhD students to the PhD programme, and to give PhD students the opportunity to meet and interact with fellow PhD students and AU representatives from fields relevant during the PhD programme.

Welcome to the PhD study
Forskeruddannelsen
8 May 2018
0
See above